Preprints
- Reinert, G, W. Xu, SteinGen: Generating Fidelitous
and Diverse Graph Samples. April 2024.
[Arxiv][Code]
International Journals & Conferences
- Clarkson, J., Xu, W., Cucuringu, M. & Reinert, G. “Split
Conformal Prediction under Data Contamination.” Conformal and
Probabilistic Prediction with Applications (COPA). (2024) [Arxiv]
- Xu, W. “Wenkai Xu’s contribution to the Discussion of ‘Safe
Testing’by Peter Grünwald, Rianne de Heide, and Wouter M.
Koolen.” Journal of the Royal Statistical Society Series B:
Statistical Methodology. (2024)
- Shi, W. & Xu, W. “Learning Causal Effect via Kernel Anchor
Regression.” Conference on Uncertainty in Artificial
Intelligence (UAI). (2023)
- Xu, W. & Reinert, G. “A Kernelised Stein Statistic for
Assessing Implicit Generative Models.” Advances in Neural
Information Processing Systems (NeurIPS). (2022)
- Xu, W. & Reinert, G. “AgraSSt: Approximate Graph Stein
Statistics for Interpretable Assessment of Implicit Graph
Generators .” Advances in Neural Information Processing Systems
(NeurIPS). (2022)
- Weckbecker, M., Xu, W. & Reinert, G. “On RKHS Choices for
Assessing Graph Generators via Kernel Stein Statistics.” In
NeurIPS Score-Based Method Workshop. (2022)
- Xu, W. “Standardisation-function kernel Stein discrepancy(Sf
-KSD): a unifying view on Kernel Stein Discrepancy for
non-parametric goodness-of-fit tests.” International Conference
on Artificial Intelligence and Statistics (AISTATS). (2022)
- Liu, F.*, Xu, W.*, Lu, J., & Sutherland, D. “Meta
Two-Sample Testing.” Advances in Neural Information Processing
Systems (NeurIPS). (2021)
- Xu, W. & Matsuda, T. “Interpretable Stein goodness-of-fit
tests for Riemannian manifold.” International Conference on
Machine Learning (ICML). (2021)
- Xu, W. & Reinert, G. “A Stein Goodness-of-fit Test for
Exponential Random Graph Model.” International Conference on
Artificial Intelligence and Statistics (AISTATS). (2021)
- Wu, X., Xu, W., Liu, S. & Zhou, Z. “Model Reuse with
Reduced Kernel Mean Embedding Specification.” IEEE Transactions
on Knowledge and Data Engineering (TKDE). (2021)
- Xu, W. & Matsuda, T. “On Geometry of Stein Goodness-of-fit
Testing.” International Conference on Geometric Science of
Information (GSI). (2021)
- Xu, W., Niu, G., Hyvarinen, A. & Sugiyama, M. “Direction
Matters: On Influence-Preserving Graph Summarization and Max-cut
Principle for Directed Graphs.” Neural Computation (2021)
- Fernandez, T.*, Xu, W.*, Marc Ditzhaus & Gretton, A. “A
kernel quasi-indepdence test.” Advances in Neural Information
Processing Systems (NeurIPS). (2020)
- Xu, W. & Matsuda, T. “A Stein Goodness-of-fit Test for
Directional Distributions.” International Conference on
Artificial Intelligence and Statistics (AISTATS). (2020)
- Fernandez, T.*, Rivera, N.*, Xu, W.* & Gretton, A.
“Kernelized Stein Discrepancy Tests of Goodness-of-fit for
Time-to- Event Data.” International Conference on Machine
Learning (ICML). (2020)
- Liu, F.*, Xu, W.*, Lu, J., Zhang, G., Gretton, A. &
Sutherland, D. “Learning Deep Kernels for Non-Parametric
Two-Sample Tests.” International Conference on Machine Learning
(ICML). (2020)
- Xu, W., Niu, G., Hyvarinen, A. & Sugiyama, M.
“Influence-Preserving Classification for Directed Graphs.” ACML
Weakly- supervised Learning Workshop. (2019)
- Xu, W. & Hyvarinen, A. “Causal Clustering Detection via
Complex Eigen-decomposition.” ICML Workshop on CausalML. (2018)
- Jitkrittum, W., Xu, W., Szabó, Z., Fukumizu, K. & Gretton,
A. “A Linear-time Kernel Goodness-of-fit Test.” Advances in
Neural Information Processing Systems (NeurIPS). (2017) (The
Best Paper Award)
Thesis and Technical Reports
Last update: Sept. 2024